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Abstract—In the paper. projective plane duality, that is, a point-to-line. line-to-point, incidence-
to-incidence correspondence between plane trusses and grillages of simple connection is treated. By
means of linear algebra it is proved that the rank of the equilibrium matrix of plane trusses and
grillages does not change under projective transformations and polarities ; consequently the number
of infinitesimal inextensional mechanisms and the number of independent states of self-stress are
preserved under these transformations. The results obtained are also applied to structures with
unilateral constraints, and by using several examples it is shown that plane tensegrity trusses have
projective dual counterparts among grillages which can be physically modelled with popsicle sticks
by weaving.

I. INTRODUCTION

Many problem books and text books, e.g. Beer and Johnston (1976) or Lowe (1982), on
elementary engineering mechanics and on the theory of structures, present the structure in
Fig. l1a as an example of how to bridge a square-shaped hole with straight beams whose
length is smaller than the side-length of the hole. In Fig. la, the bcams form a woven
arrangement such that the beams support cach other. The mechanical model of this structure
is a horizontal plane grillage (beam grid) subjected to vertical forces, and the internal
conncction forces and reactions are also vertical.

The plane truss (pin-jointed framework) in Fig. 1b demonstrates many properties
similar to those of the grillage in Fig. la. The numbers of jeints and bars in Fig. Ib are the
same as the numbers of beams and junctions in Fig. la, respectively. (Here and elsewhere
in the paper, junctions mean points of intersection of beam axes and, in some cases, points
of support of beams.) Three bars meet at a joint in the truss ; and three junctions lieon a
beam in the grillage. The structures in Figs 1a and 1b are in a correspondence called duality,
where correspondence is between beams and joints, and junctions and bars. At a junction
as well as in a bar, a single internal force arises, and the equilibrium of a beam as well as
that of a joint can be described by two equations. Structures, both in Figs la and 1b are
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Fig. 1. (a) A grillage (beam grid). (b) A plane truss (pin-jointed framework).
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statically determinate and therefore simply stiff (supposing all the junctions and members
to be under bilateral constraints. i.e. able to carry both tension and compression).

It was already known, in part, in the last century that the stiffness of a structure, or
more exactly, the static and kinematic properties due to the linear theory of structures
(determinacy, indeterminacy, overdeterminacy) are projective properties (Rankine, 1856
1857, 1863). This means that these structural properties do not change under a projective
transformation which, in our case in the plane, maps trusses into trusses and grillages into
grillages.

Only recently has it been discovered in mathematics (Whiteley. 1987, 1988a,b) that
these structural properties are preserved under a polarity which, in our case in the plane,
maps trusses into grillages and grillages into trusses.

The most tractable plane structures are trusses, and the engineering imaging concerning
trusses is well developed. Grillages, however, are less tractable and in many cases it is not
apparent how a grillage works, notwithstanding—as remarked by Lowe (1982) —that the
solution to a rather complicated grillage problem was already given by John Wallis in his
book Mechanica (Wallis, 1671). So. from an engineering point of view the importance of
the mathematical discovery relating to polarity is the fact that a grillage may be transformed
into a truss and the static-kinematic properties of the grillage may be analyzed in an
equivalent truss. But, on the other hand. in some cases polarity is able to transform trusses
with very complicated networks into surprisingly simple grillages.

The aim of this paper is to show how these mathematical results can be formulated in
tcrms of engincering mechanics and how the duality between planc trusses and grillages
appears. (In order to understand the structural-mechanical consequences of projective
transformations and polaritics, knowledge of projective geometry is needed. But nowadays
projective geometry does not belong to the mathematical tools of engincers. Thercfore, in
an Appeandix to this paper, we detine some basic terms in projective geometry.) We show
projective and polar invariance of the static-kincmatic propertics of plane trusses and
grillages. We will do it, not in a geometric, but in an algebraic way, by using vectors and
matrices —which are more understandable and casicer to follow by engineering readers. In
fact, it will be proved that the rank of the coctlicient matrix of the equilibrium equations of
plane trusses and grillages does not change under projective transformations and polaritices.

There is a class of bar-and-joint assemblics which are composed of members which are
able to carry only tensile forces and of members which are able to carry on compressive
forces. These assemblies are called ““tensegrity™ structures if they can be in a state of self-
stress in themselves, that is, without any attachments to a foundation (Calladine, 1978).
(In the mathematical literature (Roth and Whiteley, 1981) this term has a somewhat
different use ; and a *tensegrity” structure is composed of members with both unilateral and
bilateral constraints, that is, it is formed of cables (tension members) struts (compression
members) and bars (good in both tension and compression).) In this paper it will be shown
that plane “tensegrity” trusses have polar counterparts among grillages where junctions are
able to transmit only tensile or only compressive forces from one beam to the other. It will
also be shown that physical models of these grillages can be made in the easiest way, in
many cases, from “popsicle™ sticks in a woven form.

In this paper “grillage™ always means a grillage with simple junctions between beams,
that is. with connections which are only able to carry forces perpendicular to the planc of
the grillage.

2. CONCEPT OF DUALITY

It is well known that there is a duality in three-dimensional space between points and
plancs. So, for instance, to a polyhedron with ¥ vertices and F faces there corresponds a
dual polyhedron with V faces and F vertices such that an i-valent vertex and a j-sided face
of the dual polyhedron corresponds to an i-sided face and a j-valent vertex of the primal
polyhedron. Such a duality in the plane is between points and lines.

A planar configuration composed of points and lines can be considered the network
of a rod structure. If points are pin joints and lines are bars then we have a plane truss. If
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lines are beams and points are junctions thert we have a grillage. Forces and displacements
are in-plane for the truss but are perpendicular to the plane for the grillage.

Figure 2a shows the network of a truss and Fig. 2b shows the network of a grillage.
Joints in Fig. 2a and beams in Fig. 2b have single numbers: bars in Fig. 2a and junctions
in Fig. 2b are identified by two numbers. Lines A-{, B-4, C-4 in Fig. 2a and points A-1,
B-4. C-4in Fig. 2b represent supports. Figures 2a and 2b are in duality. For example, beam
2 and junction 2-3 in Fig. 2b correspond to joint 2 and bar 2-3 in Fig. 2a. respectively.
Joints 2 and 3 in Fig. 2a are joined by the bar 2-3. and beams 2 and 3 in Fig. 2b are joined
at their junction 2-3. The correspondence between these structures. however, is more than
simple geometric duality. Duality here gives a correspondence between certain statical and
kinematical properties of the structures. For example, the truss without bar 1-3 and. dually,
the grillage without junction 1-3 are statically determinate, whereas with bar 1-3 and with
junction 1-3 the truss and the grillage, respectively, are statically indeterminate.

Let us investigate plane duality in a general case. Consider first a plane truss composed
of j joints connected by b bars to each other and by a total of ¢ kinematic constraints to a
rigid foundation. If the constraints are replaced by ¢ supporting bars then the equilibrium
equations for a general joint & in a Cartesian coordinate system ., y (Fig. 3) may be written
in the form

S
Z (xi— ) T‘ + fir =0,

S,
Y (ri=r) 7 + Loy = 0. §)

Here x,. y, are the Cartesian coordinates of joint i; [, and §; are the length of and the force
in the bar joining joints i and k; fi,, fi, arc thc components of external load at joint k.
Summation has to be made for the number of bars joining at joint k. Equations (1) may
be written for £ = 1,2,...,j. After introducing the tension coeflicient ¢, = §/f, duc to
Southwell (1920) we obtain the sct of equilibrium cquations in the form

G't+f=0. ()

Here superscript T denotes transposition, G is a 2 x (b+¢) matrix called equilibrium
matrix (G is the geometric or compatability matrix ; Szabd, 1973), tis the vector of tension
coefficients, reactions included, f is the vector of external loads. Let us denote the rank of
the matrix G" by p(G"), the number of independent inextensional infinitesimal mechanisms

(a) {b)

Fig. 2. Duality between the networks of (a) a plane truss and (b) a grillage.
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X

Fig. 3. A joint & which carries external forces and is connected by bars to other joints.

by m. and the number of independent states of self-stress by s, then we have (Calladine,
1978)

p(GY+m =2, p(G)+s=b+c
whence

2j—b—c=m-s. 3

When we choose not to include reactions, replicing constraints, in the formulation and
consider the truss to be ““free in the planc™ we may delcte ¢ rows and ¢ columns of GT. The
equilibrium matrix of the truss in this situation will be a (27— ¢) x » matrix. In many cases,
only rigid body motions are intended to be prevented, so ¢ = 3 and for the modified
(2/—13) x b equilibrium matrix formula (3), in general, remains valid.

Consider now a grilluge composed of B beams connected by J junctions to each other
and by a total of C kincmatic constraints to a rigid foundation. If the constraints arc
considered junctions between beams and a foundation then the equilibrium equations for
# general beam k in a Cartesian coordinate system x, y (Fig. 4) may be written in the form

Y XIS+ x; [ =0,

i

YyiSi+yifi=0. (4)
i

Here x;, y; and x7, 3} are the Cartesian coordinates of junction i and those of the point of
application of the resultant of the external loads on beam &, respectively, S; is the force
arising at the junction between beams i and &, and [ is the resultant of the external loads

x

Fig. 4. A beam & which carries an external force and is connected at junctions to other beams.
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on beam k. Summation has to be made for the number of junctions lying on beam k.
Equations (4) are equations of moment equilibrium about the y and x axes, respectively,
and it is supposed that the beam axis does not pass through the origin of the coordinate
system. Equations (4) may be written for k = 1,2,..., B. In this way we obtain the set of
equilibrium equations in the form

GTs' +f = 0. (5)

Here G is a 2B x (J+ C) matrix, the equilibrium matrix; s’ is the vector of connection
forces, reactions included ; f” is the vector of external loads. Let us denote the number of
independent inextensional infinitesimal mechanisms by M and the number of independent
states of self-stress by S. then we have

p(GTY+M =2B. p(G)+S=J+C
whence

2B—J~-C=M-S. (6)

In many cases C =3 to prevent rigid body motion (three infinitesimal displacements
perpendicular to the plane, which can be due to rotations about line axes in the plane), and
we analyse the grillage as that which is “free perpendicularly to the plane™, and for the
modified (28— 3) x J equilibrium matrix eqn (6). in gencral, remains valid.

If there is a point-to-line and a line-to-point correspondence, that is, a plane duality
in the above sense between the planc truss and grillage under investigation then

and from (3) and (6) it follows that
m—s=M-S. )]

Equation (7), however, does not necessarily yicld the equalitics m = M and s = S. [t can
happen that the primal structure is statically determinate, that is, m =0, s =0 and so
m—y =0, but the dual structure, in spite of the fact that M —S = 0 holds, is both kine-
matically and statically indeterminate to degree d, thatis, M =d, S = d.

This kind of plane duality, which preserves only connectivity properties, that is, the
topologicul character of the structures, cannot be considered as a rigorous geometric plane
duality in which a statement valid for points and lines remains valid by interchanging the
words “point’ and “'line”". Such a rigorous plane duality can be given by projective geometry.

There can occur hidden points of intersection of lines in the network of a structure
which are not structural nodes and so are not considered. Morcover, in the dual network
the points corresponding to the primal concurrent lines are not collincar, and lack of
collincarity of these points is not considered cither. In projective gcometry such “mistakes”
cannot occur since projective plane duality requires not only point-to-line and linc-to-point
correspondence but correspondence between all incidences.,

We want to analyse the projective plane duality between plane trusses and grillages.
Some basic terms and principles of projective geometry (Coxeter, 1974), which are necessary
for such an investigation, are defined in an Appendix to this paper. Symbols used in the
proofs are also defined there.

3. PROJECTIVE INVARIANCE OF THE RANK OF THE EQUILIBRIUM MATRIX

For plane trusses and grillages we prove the following (Rankine, 1863 ; Crapo and
Whiteley, 1982).
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Theorem. The rank of the equilibrium matrix of a structure does not change under a
projective transformation.

3.1. Trusses

Letr, =[x, y. 1], ro =[x, y. 1]7 be the vectors of joints i and k of a truss and f, = [fi, fi, 01" be the
vector of the load at joint k. Using the direction unit vector e, (Fig. 5) we may write the equilibrium equation of
a general joint & as follows

TS+l =Y S~ =0,
i i Ie,—red
that is, by using tension coefficient ¢, = S,/[r,—r,|,
Z':(r.“rk)"f‘rk =0 (8)

which is the vector form of eqn (1) so that the third scalar equation is identically zero.

We apply a projective transformation to the truss such that r; = (l/o;)Pr; and we investigate how the
equilibrium equations are transformed. The transformation cannot be applied directly to eqn (8) since the force
vectors 1,(r,—r,) and f, geometrically are points at infinity but the transformation. in general, makes them finite
points. We can reduce this difficulty by using the equation of the moments of the forces with respect to the point
O (Fig. 5) instead of (8) (Klein, 1909 ; Crapo and Whiteley, 1982):

[Zli(r,-—r,,)-i-l‘k]xr,, =0. )

that is,

Yaexn)+6xe =0, (10)

i

Since point O is out of the planc of the forces, eqn (8) holds if and only if eyn (9) or (10) holds. Equation (10)
in scalar form takes the shape

Yu(i—y)+h, =0,
=Y (5 =x) =~ fi, =0,

Yaxy=xp) + i = fuxi = 0. ay
i

It is casy to sce that the first and second equations of (11) are identical to that obtained by resolving the forces

along the positive y axis and the negative x axis, respectively, and the third equation describes the equilibrium of

the moments of the forces about the x, axis, The third equation is lincarly dependent on the first two equations,
In order to sce the transformation of the external load we write the vector f, in the form

=ty (r,—r). (12)

Here r, # r, is an arbitrary point on the line of action of the load f, and 1, = fi/lr, —r,| where £, is the magnitude
of the force vector {,.

X3

x2

Fig. 5. Joints i and k of a truss and external and internal forces at joint & in the projective plane.
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Now, consider the sum of the moments of the forces at joint & in the transformed truss with respect to point
0. If (9) holds and we use the refationships (A4) and (A6). and we mark the transformed quantities by a prime,
then we have

[Tam-e+0]xe = Tewxe + o xe)

=Y fau+aju; =Y (20 (PT) " o+ 250, (P) ",
{ 1
=Y txz(PT)! I (e, xr) + x0T, (P! ; (r, xvr,)
=(P")"' [Z LE, X T+ 1,8, X rk] =(PNH-! {[Z t(r; —r,,)+f,,] x rk} =0, (13)

that is, the transformed joint k& loaded by the transformed forces is in equilibrium. Here ¢, = fja;z,/2, and
t = teat,/a,. .
Let us introduce the notation §; = x;t,/2,. From (13) it follows that

Lrxng =Y (P~ (r, xc)pi.

If here we extend the summation to all of the bars, writing zeros for the factors of the tension coefficients of the
bars not meeting at joint k we obtain a relationship between the 3 x (b + ¢) coefficient matrix of the transformed
equilibrium equations of joint k and that of the original ones. But the elements of the first two rows of these
matrices are interchanged. This is apparent if we compare eqns (1) and (11). We obtain the elements of the
coeflicient matrices in the proper order and with the proper sign if we rcarrange the elements of matrix (PT) "
The matrix obtained by rearranging (P7) ' is denoted by R,

Py =Py =Py

=axpl - Py Py
- pl.‘ I'll PJI
where P, is the cofactor of the element p,, in the determinant of P,

Let us denote the 3 x (b +¢) extended cquilibrium: matrix of joint & of the transformed truss and that of the
original truss by H; and 11, respectively, such that

X, =X . e X, =Xy
Me=| .. w-y . Be=].0 y-p ) (14)
BN v A e XY =X W

The term “extended™ refers to the fuct that not two but three equilibrium equations are taken into consideration.
Furthermore, let us introduce the (b +¢) x (b +¢) diagonal matrix D of coeflicients f,

D=<(.. B ..O.
Then we have
H, = RH,D. (15)
Applying the transformation (15) fork = 1,2,..., j we obtain the relationship
Gl =LGLD
where
H, H, [ |
: : R
Gi=|m|. GL=|[n]. L= R . (16)
Ii', l.l, R

Here G, and G, denote the 3/ x (b +c) extended cquilibrium matrix of the transformed truss and that of the
original truss. Since L and D arc nonsingular, p(G_.l,) = p(Gl,,) duc to Sylvester's thecorem on rank (Halmos,
1974). But every third row in both G_1, and GJ,, is lincarly dependent on the previous two rows, so the rank of
these matrices does not change if we crase every third row. In this way we obtain the 2 x (b +¢) equilibrium
matrices G7 and G* of the transformed truss and the original truss, respectively, such that

PGT) = p(Gl). p(GT) = p(GL).
consequently
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p(GT) = p(G"),
that is. the rank of the equilibrium matrix of a truss does not change under a projective transformation, nor do
the number of independent infinitesimal inextensional mechanisms and the number of independent states of self-
stress: m =mand 5’ =s.

Remark. In the special case where projective transformation is an affinity, the transformation for the joint k
can be directly applied on eqn (8) using notation (A9) and a relationship for f, similar to (12):

Yu@E-1)+h = Y@ -+, F —F)
= Z':[Ai‘ +b—(AF + b)) + £/ [AF, + b—(AF, +b)]
= A[Z ;,(i,—f.)w,(i,-f.)] = A[Zt,-(i,-—i,,)+f,,] =0.

Here ¢, =, and ¢, = ;. that is, the tension coefficients do not change under an affine transformation. For the
equilibrium matrices of the truss the relationship

GT =BG" )
holds. where
1 2 J
A
B = A . (18)
A

Since B is nonsingular we have p(G'™) = p(G").
3.2. Grillages
Consider a beam k of a grillage (Fig. 6). The force arising at its junction with beam i as well as the resultant

of the external loads on the beam k are paralicl to the x, axis and they can be considered as weights of magnitude

S; and f,, respectively. Let the vectors of the junction and that of the point of application of the force f; be

r,=lx y l|Fandr, =[x, y, 1]". We may write the equilibrium equation of a general beam & as follows :
Y.Se+fir, =0 19)
]

which is the vector form of eqn (4) so that there is a third scalar equation which is a lincar combination of the
first two equations. Namely, eqn (19) in scalar form takes the shape

Y Sx+ fix, =0,
Syt 4y, =0,

YS+54=0. Q)

X3

xQ
Xy

Fig. 6. Beams i and k of a grillage and external and internal forces (weights) on beam & in the
projective plane.
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It is easy to see that the first and second equations of (20) describe the equilibrium of the moments of the forces
about the y axis and the x axis, respectively, and the third equation is the resolution of the forces along the x,
axis.

We apply a projective transformation to the grillage. and consider the sum of the weighted vectors pointing
to the beam k of the transformed grillage. If (19) holds and we use the relationship (AS). and we mark the
transformed quaatities by a prime then we have

1 H 1 ]
v =V~ * Z Pr, = 2 C = : = >
;s,r,«&fkr, ;s, . Pr.+f: , Pr, P(Z‘:S,m S 7 rf) P(};s;,-;—f,,n) 0, n

that is, the transformed beam & loaded by the transformed forces is in equilibrium. Here §, = Si/o,and /; = fi/0,.
From (21) it follows that

- te
El’,s, = ZPT,;S,.

If here we extend the summation to all of the junctions, writing zeros for the coefficients of the connection forces
at the junctions not lying on the beam & we obtain a relationship between the 3 x (J+ C) extended equilibrium
matrix of the transformed beam & and that of the original beam k, which has a form similar to (15):

K: = PK,E.
Applying this transformation for k = 1.2...., B we have

Gl =MGLE

where G}, and G, denote the 38 x (J+ C} extended equilibrium matrix of the transformed grillage and that of
the original grillage, such that

K K, it 2 ... B
: : P

Gh= 1K |. GL.=|x,|. M= P . @)
K3 Ks P

E={.. leo ..0isa{(J+C)x({J+C)diagonal matrix and

e X ... e X
Ki=|... 5 ...} K=}, y .. 23
| I RO |

are 3 x (J+C) matrices such that x{, y; and x,, y, denote the coordinates of the junctions lying on the beam .
From this point onwards the argument is the sume as that in Section 3.1 after (16). As a consegquence, the rank
of the equilibrium matrix of a grillage does not change under a projective transformation, nor do the number of
independent infinitesimal inextensional mechanisms and the number of independent states of self-stress: M = M
and §* = §.

Remark. In the special case where projective transformation is an affinity, the transformation for the beam
k can be described by vectors in the xy plane. If we suppose that (19) holds and we use notation (A9), we have

Y SE+ fit; = Y SIAT +b) + fL(AF, +1b)
- ,\(;s;f,af /;f,)«»b(; Si+ f;)
= ,\(zl:s,i‘-i—j;i,)+b(2':s,+ﬁ) =0

Here §) = S, and £, = fi. that is, the connection forces and the loads do not change under an affine transformation
of a grillage. The transformation of the equilibrium matrix has a form similar to (17) with the same matrix B in
(18).

4. POLAR INVARIANCE OF THE RANK OF THE EQUILIBRIUM MATRIX

For a polarity between plane trusses and grillages we prove the following (Whiteley,
1987, 1988a)



1404 T. TARNAI

Theorem. The rank of the equilibrium matrix of a structure does not change under a
polarity.

Suppose that there is a polarity between a plane truss and a grillage so that beams / and k& in Fig. 6 correspond
to joints i and & in Fig. 5 and the junction of beams i and & in Fig. 6 corresponds to the bar joining joints i and
k in Fig. 5, which implies that B8 = j, J = b, C = ¢. We use the same notation as that in Sections 3.1 and 3.2 with
the difference that here the points and other quantities concerning the grillage will be marked by a prime.

Let us suppose that the joint & of the truss is in equilibrium, that is. (8) holds and we want to know whether
the beam & of the grillage is in equilibrium. If we use relationships (A4), (All) and (12) we have

TS+ firne =Y SvQ lu+ fiv,Q 'y,
| l
=Y SvQ ' (nxr)+ fiv, Q™' —(r, x1)
i % %s
=Q- '[Z LE X O+ 00, X r,‘] =Q! {[Z Lt —r) + fk]x r,,} =0, (29

that is, the beam & loaded by the transformed forces is in equilibrium. Here ¢, = Siv/x,and ¢, = fiv,/a,.
Let us introduce the notation y, = v,/a,. From (24) it follows that

rrsi=YQ ' xr)uSi.
i i

Extending the summation to all of the junctions and bars and writing zeros for the coefficients of the connection
forces at the junctions not lying on the beam k and for the factors of the tension coefficients of the bars not
meeting at joint k. respectively, we obtain a relationship between the 3 x (J+ C) extended equilibrium matrix of
the beam & and the 3 x (b +c) coefficient matrix of the equilibrium equations of joint k. But the elements of the
first and second rows of this latter matrix are interchanged. We obtain the elements of this matrix in the proper
order and with the proper sign if we rearrange the elements of matrix Q ~'. The matrix obtained by rearranging
Q 'isdcnoted by T,

-Qu Qll Qu
T=&Ei‘w ~Q:: Q2 Qu
-Qn Q0 Qs

where @, is the cofactor of the clement ¢, in the determinant of Q.
Introducing the (b +¢) x (b + ¢) diagonal matrix F of coctlicients y,

F=¢{.. 7 ..

and using notation in (23) and (14) we obtain the relationship between the extended equilibrium matrix of the
beuam k and that of the joint & in the form

K; = THLF. (25)
Applying this transformation for k = 1,2,..., B (B = j) we have

where G.T, and G, are the 38 x (J+C) or 3jx (b+c) extended equilibrium matrices of the grillage and that of

ext

the truss. GT, is defined by (22), G, is defined by (16) and

—
~
.

T

Since N and F are nonsingular, p(G_%,) = p(GL).

But every third row in both G, and GZ,, is lincarly dependent on the two previous rows, so the rank of these
matrices does not change if we erase every third row of them. In this way we obtain the 2B x (J+ C)or 2jx (b+c¢)
equilibrium matrices G'™ and G” of the grillage and of the truss, respectively, such that

P(G™) = p(G). p(GT) = p(GL)
and consequently
p(G™) = p(G"),

that is, the rank of the equilibrium matrix of a truss and that of its polar counterpart (grillage) are the same and
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so are the numbers of independent infinitesimal inextensional mechanisms and the numbers of independent states
of self-stress: M ' =m. §" =s.

Remark. The polar invariance of the rank of the equilibrium matrix can be shown also for the case where a
truss is considered the polar counterpart of a grillage, since (26) implies

Gl =N"'GIF .

5. "TENSEGRITIES” AND *“POPSICLE STICK GRILLAGES"

Due to the polar invariance of the rank of the equilibrium matrix, a polarity maps a
plane tensegrity truss into a grillage with special junctions able to transmit only tensile
forces or only compressive forces. In the case of a tensegrity truss. the members in tension
and those in compression can be modelled by cables and struts, respectively. In the case of
its polar counterpart, however, the junctions in tension and those in compression can be
modelled by nodes of the same character, if we apply the proper connection forces on the
reverse side of the beams. Figure 7 shows the possibility where all the connections in tension
are replaced by connections in compression. When we make a physical model we can do
this by weaving the beams in the grillage. In this way, at the junctions, only compressive
forces can arise. It is very easy to demonstrate this by using popsicle sticks. (The grillage
in Fig. 1(a) can also have such connections, provided the loads are acting downwards only.)

Some simple cases are presented in Fig. 8 where (a) shows woven popsicle stick grillages
and (b) shows plane tensegrity trusses obtained from the grillages by polarity with respect
to a circle. In (b) double lines and single lines mark members in compression and those in
tension, respectively.

In Fig. 8(3a) there is a grillage which contains a junction where three beams mecet. In
its polar truss (Fig. 8(3b)) three joints lic on a line. The correspondence between the grillage
and the truss, however, is not onc-to-one. This is due to the fact that a common junction
of three beams is reckoned as a douwble junction. (This fact should also be considered in the
counting formula (6). In general, if n bcams meet at a point, then that point is reckoned as
n—1 junctions.) We have a one-to-one correspondence if we know which beams have direct
connections in a multiple junction. In the case of the double junction in Fig. 8(3a) threc
kinds of connections can exist, but Fig. 8(3b) only shows the polar of one of these.

The structures in Fig. 8(5a, b) are statically three times indeterminate. The figure shows
only one of the possibilitics of the three independent states of self-stress.

Figures 8(6a, b) and 8(7a, b) present special cases where the popsicle stick grillages and
their polar tensegrity trusses are both statically and kinematically indeterminate to degree
onc. Here the simultaneous indeterminancy is a consequence of the fact that in Fig. 8(6a)
the six beams are tangent to a circle (in the general case, to a conic), and in Fig. 8(6b) the
six joints lic on a circle (in the general case, on a conic) (Whiteley. 1988a). In Fig. 8(7a)
there are two groups of beams such that the beams belonging to the same group are parallel
(in the general case, are concurrent), and in Fig. 8(7b) there are two groups of joints such
that the joints belonging to the same group are collinear (the joints lie on two straight lines,
i.e. on a special degenerate conic). If these special properties do not hold, then the structures
in Figs 8(6a, b) and 8(7a, b) become both statically and kinematically determinate (not with
unilateral but bilateral constraints of the junctions and members).

” 4 7 (4

Fig. 7. Replacement of connections in tension by connections in compression.
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Fig. 8. Polarity with respect to a circle between (a) popsicle stick grillages and (b) planc tensegrity
trusses. (I): B=j=3 J=b=06,(23): B=j=5 J=bh=8, (§): B=5=6. J=bh=10;
(5y:B=j=6J=b=12(67).8=j=01=b=9.

By using the parallel-perpendicular weaving applied in Fig. 8(7a), with little modi-
fication, onc can produce an arbitrarily long popsicle stick grillage (Fig. 9) whose degree S
of statical indeterminancy is one, independent of the number of sticks in the grillage, and
for which M = 0. A polarity results in a one-fold statically indeterminate tensegrity truss
whose joints corresponding to the parallel beams lie on two straight lines. Polarity with
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Fig. 9. Polarity with respect to a parabola between a popsicle stick grillage and a plane tensegrity
truss such that J = 2(B—1), B > 4 integer, or which is the same, b = 2(j—1). j 2 4 integer.

respect to a parabola is presented in Fig. 9 where, regardless of the ends of the structures,
to a square-mesh grillage there corresponds a “'regular™ truss having members with inclina-
tion of +30 and +60 .

A tensegrity truss with a one-parameter state of self-stress has the property that by
cutting through (by removal of) an arbitrary member of it, the state of sclf-stress disappears
and the truss fails. A popsicle stick grillage with a one-parameter state of self-stress has the
same property. but the process of disintegration is much more spectacular. This is due to
the fact that in the course of weaving, the popsicle sticks are bent and, in consequence of
the clastic deformation caused by bending, strain encrgy is stored in the grillage. When an
arbitrary junction is disconncected the grillage explodes due to the stored energy. If one
produces a very long “popsicle stick bomb™ then one can also observe the propagation of
cxplosion.

6. CONCLUSIONS

6.1. For plane trusses and grillages, by using only linear algebra, we have proved two
invariance theorems:

(a) The rank of the equilibrium matrix of a structure does not change under a projective
transformation,
{b) The rank of the equilibrium matrix of a structure does not change under a polarity.

To prove these theorems a third (redundant) equilibrium equation has been considered
before doing each transformation. This is a technical trick to simplify proofs. By trans-
forming coordinates of cach node, the transformed equilibrium matrix can aiso be
composed. and practically it does not require one to operate with three equations.

These invariance theorems imply that an infinitesimal mechanism after a projective
transformation or polarity will again be an infinitesimal mechanism. Since the linear theory
of structurcs has been applicd in the treatment, it docs not follow from these theorems
that a finite mechanism after a projective transformation or polarity will also be a finite
mechanism. _

6.2. If a plane truss and a grillage are polar then they are in projective plane duality
(in a point-to-line, line-to-point, incidence-to-incidence correspondence). Its reverse is, in
general, not true.

6.3. [ there is a polarity between a plane truss and a grillage, we can apply a projective
transformation (polarity) to the plane truss and another projective transformation
(polarity) to the grillage then the truss (grillage) and the grillage (truss) obtained by these
transformations will be in projective plane duality.

6.4. Due to Conclusion 6.1, plane “tensegrity” trusses and “popsicle stick grillages™
preserve their basic properties under a projective transformation; and plane “‘tensegrity”

SAS 25:12-0
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trusses are transformed inta “popsicle stick grillages™, and vice versa, by polarity. Conse-
quently, there can be projective plane duality between plane “tensegrity” trusses and
“popsicle stick grillages™.

6.5. In this paper only the transformation of statics of plane trusses and grillages
has been studied, but transformation of their kinematics. i.e. infinitesimal motions, can also
be of interest. The latter is discussed in Whiteley (1988a). (The correspondence for infinitesi-
mal motions can be given directly in linear algebra and in the geometry of parallel
redrawing/perspective redrawing.)
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APPENDIX: SOME BASIC TERMS OF PROJECTIVE GEOMETRY

A projective plune is a three-dimensional Euclidean space in which vectors r and Ar are considered identical
for any 4 # 0. The vector r or ir is a point of the projective plane. In a cartesian coordinate system x,, x;, x; a
pointcan be givenas [x, x, x,}Tor [ix, ix, Ax,|" where the numbers x,, x;, X; or Ax,, Ax,, Ax, are homogeneous
coordinates of the point.

In this paper we only deal with the real projective plane and we model it by a Euclidean planc with Cartesian
coordinate system x, y such that the x and y axes are paraliel to the x, and x, axes, respectively, and the origin
of the coordinate system x, y is at the x; = | point of the x; axis (Fig. 10a). If a point P of the projective plane is
given by the vector [x; x; Xx;}7 then for 4 = 1/x, we have it, as a point of the Euclidean plane, in the form

r=[x y U (A

where X = x,/x,, ¥ = x,/x,. In this paper we always use this form for denoting a point of the projective plane,
except points at infinity whose vector (direction vector) has the form [x, x, 0]

Consider the vector u = [u, u; u,)7 as the normal vector of a plane passing through the point 0. This plane
intersects the xy plane in a straight linc u (Fig. 10b). The same line is determined by the vector xu = [xu, xu; xu;]°
for any ¥ # O rcal number. The vector u or xu is a /ine of the projective plane. For = 1/u, we have

w={u, u I (A2)

where u, = u,/u,, u, = uyju,. In this paper we always use this form for denoting a linc of the projective plane,
except the lines intersecting the x, axis (passing through point [0 0 1]7), whose vectors have the form [«, u; O]'.

The point r and the line u are incident (that is, the point lies on the line or the line passes through the point)
if their scalar product
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{a) (b}
Fig. 10. (a) A point r of the projective plane. (b) A line u of the projective plane.

tu =0, (A))

that is, x4, +yu,+ 1 = 0 which is the equation of the line u in the xy plane for given u,, u,.
The line joining points v, and r, is the vector product

aa =r, xr; {Ad)

where x is a number (# 0) such that &, = | is fulfilled.
A projective transformation is a homogencous lincar transformation of the projective plane, which transforms
a point ¢ into a point r" and a line v into a line " in the following way:
or = Pr, {A5)
=P (A6)

where o and t are numbers (# 0) and P is the matrix of the projective transformation in the coordinate system
XpoXn Xyl

Pu P Py
P=1py p2 o (AT
P Py Pu

such that det P £ 0. »
Projective transformations preseree incidence. That is, if r'u = 0 then

i ; T, T
T = - (PP lu = = "PIP) lu = -rfu =0
o 4 g
A projective transformation is called an affinity if in its matrix (A7) p,, = py; = 0. In this case the trans-
formation can be described in the xy plane as a linear (but not homogeneous linear) transformation :

# = Ai+b (A8)

x E {
F'a[’c’]' ?g[x‘} A=—‘-— Pu Pu . b=_[l’u ] (A9)
¥y ¥ PP P Pulfu
A polarity is a symmetric homogencous linear transformation of the projective plane, which transforms a
point rinto a line v and a linc 4 into a point ¢ in the following way:
' = Qr, (AlQ)
v = Qr’ (ALD)

where 5 and v are numbers (# 0) and Q is the matrix of polarity in the coordinate system x,, x,, x,, such that
det Q # 0, Q is symmetric.
Polarities preserve incidence. That is, if t"u = 0 then

where

rTu = Q" 'u)*},or = ,"-,u’(Q")'Qr = ;,u'Q"Qr = },ufr =0.



